Water- and Plant-Mediated Responses of Ecosystem Carbon Fluxes to Warming and Nitrogen Addition on the Songnen Grassland in Northeast China
نویسندگان
چکیده
BACKGROUND Understanding how grasslands are affected by a long-term increase in temperature is crucial to predict the future impact of global climate change on terrestrial ecosystems. Additionally, it is not clear how the effects of global warming on grassland productivity are going to be altered by increased N deposition and N addition. METHODOLOGY/PRINCIPAL FINDINGS In-situ canopy CO(2) exchange rates were measured in a meadow steppe subjected to 4-year warming and nitrogen addition treatments. Warming treatment reduced net ecosystem CO(2) exchange (NEE) and increased ecosystem respiration (ER); but had no significant impacts on gross ecosystem productivity (GEP). N addition increased NEE, ER and GEP. However, there were no significant interactions between N addition and warming. The variation of NEE during the four experimental years was correlated with soil water content, particularly during early spring, suggesting that water availability is a primary driver of carbon fluxes in the studied semi-arid grassland. CONCLUSION/SIGNIFICANCE Ecosystem carbon fluxes in grassland ecosystems are sensitive to warming and N addition. In the studied water-limited grassland, both warming and N addition influence ecosystem carbon fluxes by affecting water availability, which is the primary driver in many arid and semiarid ecosystems. It remains unknown to what extent the long-term N addition would affect the turn-over of soil organic matter and the C sink size of this grassland.
منابع مشابه
Water- and plant-mediated responses of soil respiration to topography, fire, and nitrogen fertilization in a semiarid grassland in northern China
Soil respiration is one of the major carbon (C) fluxes between terrestrial ecosystems and the atmosphere and plays an important role in regulating the responses of ecosystem and global C cycling to natural and anthropogenic perturbations. A field experiment was conducted between April 2005 and October 2006 in a semiarid grassland in northern China to examine effects of topography, fire, nitroge...
متن کاملResponses of Plant Community Composition and Biomass Production to Warming and Nitrogen Deposition in a Temperate Meadow Ecosystem
Climate change has profound influences on plant community composition and ecosystem functions. However, its effects on plant community composition and biomass production are not well understood. A four-year field experiment was conducted to examine the effects of warming, nitrogen (N) addition, and their interactions on plant community composition and biomass production in a temperate meadow ec...
متن کاملThe Effects of Warming-Shifted Plant Phenology on Ecosystem Carbon Exchange Are Regulated by Precipitation in a Semi-Arid Grassland
BACKGROUND The longer growing season under climate warming has served as a crucial mechanism for the enhancement of terrestrial carbon (C) sink over the past decades. A better understanding of this mechanism is critical for projection of changes in C cycling of terrestrial ecosystems. METHODOLOGY/PRINCIPAL FINDINGS A 4-year field experiment with day and night warming was conducted to examine ...
متن کاملWarming and Nitrogen Addition Increase Litter Decomposition in a Temperate Meadow Ecosystem
BACKGROUND Litter decomposition greatly influences soil structure, nutrient content and carbon sequestration, but how litter decomposition is affected by climate change is still not well understood. METHODOLOGY/PRINCIPAL FINDINGS A field experiment with increased temperature and nitrogen (N) addition was established in April 2007 to examine the effects of experimental warming, N addition and ...
متن کاملEffects of Water and Nitrogen Addition on Ecosystem Carbon Exchange in a Meadow Steppe
A changing precipitation regime and increasing nitrogen deposition are likely to have profound impacts on arid and semiarid ecosystem C cycling, which is often constrained by the timing and availability of water and nitrogen. However, little is known about the effects of altered precipitation and nitrogen addition on grassland ecosystem C exchange. We conducted a 3-year field experiment to asse...
متن کامل